翻訳と辞書
Words near each other
・ Hilbert, Wisconsin
・ Hilbert–Bernays paradox
・ Hilbert–Bernays provability conditions
・ Hilbert–Burch theorem
・ Hilbert–Huang transform
・ Hilbert–Kunz function
・ Hilbert–Mumford criterion
・ Hilbert–Poincaré series
・ Hilbert–Pólya conjecture
・ Hilbert–Samuel function
・ Hilbert–Schmidt
・ Hilbert–Schmidt integral operator
・ Hilbert–Schmidt operator
・ Hilbert–Schmidt theorem
・ Hilbert–Smith conjecture
Hilbert–Speiser theorem
・ Hilbesheim
・ Hilborn
・ Hilborne Roosevelt
・ Hilborough
・ Hilbourne Frank
・ Hilbram Dunar
・ Hilbrand Boschma
・ Hilbrand J. Groenewold
・ Hilbrand Nawijn
・ Hilbre High School
・ Hilbre Island
・ Hilbre Island Lighthouse
・ Hilbre One Design
・ Hilburn


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Hilbert–Speiser theorem : ウィキペディア英語版
Hilbert–Speiser theorem
In mathematics, the Hilbert–Speiser theorem is a result on cyclotomic fields, characterising those with a normal integral basis. More generally, it applies to any finite abelian extension of , which by the Kronecker–Weber theorem are isomorphic to subfields of cyclotomic fields.
:Hilbert–Speiser Theorem. A finite abelian extension has a normal integral basis if and only if it is tamely ramified over .
This is the condition that it should be a subfield of where is a squarefree odd number. This result was introduced by in his Zahlbericht and by .
In cases where the theorem states that a normal integral basis does exist, such a basis may be constructed by means of Gaussian periods. For example if we take a prime number , has a normal integral basis consisting of all the -th roots of unity other than . For a field contained in it, the field trace can be used to construct such a basis in also (see the article on Gaussian periods). Then in the case of squarefree and odd, is a compositum of subfields of this type for the primes dividing (this follows from a simple argument on ramification). This decomposition can be used to treat any of its subfields.
proved a converse to the Hilbert–Speiser theorem:
:Each finite tamely ramified abelian extension of a fixed number field has a relative normal integral basis if and only if .
==References==

*
*
*
*

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Hilbert–Speiser theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.